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related Government procurement operation, the United States
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in any manner licensing the holder or any other person or corporation,
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I. INTRODUCTION

Problems of analysis and synthesis of radiating systems require

appropriate functions in which to expand a source distribution and

associated radiated field. To be most useful it is desirable that such

functions be suitable for source and field representations simultan-
eously, that they be complete and that they be orthogcnal in some sense
over both the source and tield region of interest. 1In the famiiiar

case when the regions of the source and the field coincide with coordin-
ate surfaces of coordinate systems in which the Helmholtz equation is
separahle, the corresponding eigenfunction representation is valid for

both the source and the field. The characteristic modes of loss-free

bodies of arbitrary shape, introduced by Garbacz [1,2], and elaborated
by Harrington and Mautz [3,41 qive another pessible representation where
the source and field observation ragions coincide, but the orthogona!
properties of these functions apply only to the body surface and the

sphere at infinity.

In this report we treat the more general case where the region
of observation dees not necessarily coincide with the source region,

rasulting in orthogonal properties over more general regions than the

body surface and the sphere at infinity, An investigation of the validity

of Parseval's relation for a more general operator equation than a Fourier
transform leads us to an eigenvalue equation of the Hermitian iterated
operator, whose solutions shalt be called cigenscurces and the radiated
fields of which shall be called eigenfields. An eigensource and an
associated eigenfield each satisfies an orthogonality property simul-
taneously but, in general, over different regions of space. The sets
of eigensources and eigenfields can then be used as convenient basir

functions with winich to solve various problems systematically.

Cxanmples are developed for the optimization of an array under

given constraints and for the determinaticn of aperture distributicns

i
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transferring maximum power to a second aperture. In the latter case,
the eigenfunctions arising from the present theory are shown to be the
prolate spheroidal functions. In the case where the eigenequation is
developed from a current source flowing on a closed surface and the
component of the corresponding electric field tangential to the same
surface, we are led to eigencurrents and eigenfields which differ from
characteristic modes (which involve the same two quantitias); whereas

a characteristic current and a characteristic f.eld display differing
amplitude distributions but maintain a constant phase relationship over
the surface, the eigencurrents and eigenfields introduced here display
similar amplitude distributions but maintain a complex cor jugate phase
relationship over the surface [5]. Only when the surface corresponds
to a coordinate of the coordinate systems where separability applies

do the characteristic functions and the eigenfunctions of the Hormitian
iterated operator coalesce to become one and the same such as in the
case of the circular conducting cylinder and cunducting Sphere. Examples
are discussed involving the infinite rectangular conducting cylinder,
and the linear conductor,

IT. EIGENFUNCTIONS ASSOCIATED WITH SOURCE AND FIELD

We ceonsider a source s and a resulting field f all in a linear
medium which are related by an integral operator G as
f=6s . (1)

When the operator equation (1) happens to be a Fourier transform (when
for example s is a planar source and f is the corresponding far field
on the sphere at infinity) we know that f and s satisfy a Parseval's
relation, i.e., the norm of f is equal to the norm of s. In the fol-
lowing section we inquire whether or not this same result applies to
the more general operator equation (1).
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A. Eigenvalue Equation of a Hermitian Iterated Qperator

To begin, let us define the inner product of two sources, (Si,sj)

and the inner product of two fields (fi,fj} as folleows:

_ c
(si,sj)Rs = gs si(kx)sj(kx)d(kx) (2)
Crinass
(f].,fJ.)Rf - hrf w(kx)f | (kx) €5 (kx) d(kx) (3)

where w(kx) is a real weight function (often unity) and RS and Rf are
the regions where the sources are distributed and the fields are ob-
served, respectively. The superscript ¢ denotes complex coniugate and

k = %1 is the wavenumber in terms of the wavelength ).

Using Equation (1), we obtain

(0830 = (05,555
f f

= (s;,0%Gs ) (4)

where * s the adjoint operator of . The iterated operator G*G is
Hermitian and is denoted henceforth by+

= G*r. (5)

+More explicitly, since G is an integral operator, Equation {1) is of

the form

f(kx) = gsl(kx') = Glkx,kx')s(kx')d(kx")
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where G is the integral kernel, Therefore Lquation {3) becomes

T T B O g

t =
g v r 3
5 (fi,fj)R =0 wikx)l f G(kx,kx')si(kx‘)d(kx')i{sGc(kx,kx“)sf(kx“}d(kx“) d(kx) 3
§ f Rf Rs LR -
% ]
5 [ sgtoe ) Ei] w(kx)G(kx,kx')Gc(kx,kx")".{kx)-l s“ ) a (k) b (k)
g Rg Roife 47 E
& ¢ C
) E~ r ¢ ¢ i
¢ (Rl,:ﬁ*as]) = f s]-.’\-(x')}j P D ow ()G (koG ke )Gk ke Td (ks (kx ") d(kx" ) yd(kx ') &
J Do o ;
? e Rg leiBf J -
1 . 7’ i
where we have used Eguation {4) on the left side of the ahove eguation. ;
q Understanding that the inner product over the source region RS is defined ?
; by Equation (2) and comparing the two sides of this equation, we see E
. that
v H3 (kx')=6*3s  (an' V=S L w(kx 3G (kx,kx')Gikx,kx")d{} 5 kU RdLkR") i
R ,Re : !
. St - #
i;
% In this expression we recognize that wE(kx} = wikx) because the weighting !
. i
function wikx) is real. It is more usual to define an iterated operator f
A without the weighting function. ?
5 B
¢ e ’
* If & is the Fourier operator, ¢ reduces to an identity operator E
& ¥
E and Equation (4) is Parseval's relation. Ffor a similar relatior to i
g hold in our case with a more gencral operator, the source must satisfy 5
s an equation of the form 1
L
4
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HS; =ViSy (6)

We recognize Equation {6) as an eigenvalue equation of 7 with eigenvalues

V; and eigenfunction solutions S5 which satisfy the orthonormality con-

dition
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where ﬁ*j is the Kronecker delta. From Equations {4}, (7) and (8) we

also have

L f. = [5..4is.) = v, &
(f],fJ)R (S SJ,R "85

[ S

——
el
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We shall call {si} the eigensources defined on R  and {fi] the eigenfields

def ined on R The iterated Hermitian operator property of §; assures

£
us that the {uiF are real and positive semidefinite and that the {Si}
are orthogonal and complete on RS if i7 1s not imwroperly singular.

The same may be said of the {fi}. We shall arder the eigenvalues {vi}
such that their values decrease with increasing index 1. This, together
with Fquations {8) and (9}, 1m lies that the ratio of the norm of fi

to the norm of s is largest for the Towest elgenvalue v, and equal

to it numerically,

Now that we have defined pertinent quantities in general terms,
let us consider a few simple but nseful examples of the above theary.
. . + 30t . . .
In the following sections an e J time convention 15 assumed and

suppressed,

=y - R = o _ o - N I o |
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¢. Eigensources and Etigenpatterns of Arrays

Figure 1 shows an N-element linear array of isotropic point sources
with uniform spacing d. We consicer the source s to be the N array
elements with excitation strengths S1s S e SN defined on the array
proper, and the field f to be the corresponding far-radiated field pattern
function f(8) defined on the sphere at infinity. In this case the
operator Equation {1) becomes

RONCIEN (10)
" i
with

G, (n) = elRdeust n1,2.. N ()
and Equations /?) and {3) become

(s,8)g = © s (12)

15,5 RS - né‘ Satn .

=i
m c.
(f,f)p = 2n [ fln)f{g)singdo (13)
f 0 :

The weight functien w in this case is 2nsini. The eigenvaiue equatio:n
{6) reduces to the algebraic equation

N
© . . (14
i H(n,m)sim TS 1,n=1,7,...N (14)
m= ]
where the operator i reduces to an NxN matrix H with elements
7 c
\ [P N
Hin,m: = 21 | uo(ﬂ)Gn(m)SinNdH
o )
sin{n-mikd
s Ag 2RI R n,m=1,2,...N . {15

{n-mikd

6
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The eigenpattern fi(o) corresponding to the 1th eigensource S5 is

O(H)Sin . {16)

The sets {Si} and {fi] are useful in at least two ways. First,
the eigensource with the largest eigenvalue is the source which radiates
the larygest power while the norm of the source is fixed, i.e., the array
has the highest radiation efficiency. Secondly, we can synthesize a
given arbitrary pattern f{9) in a least mean sguare sense by choosing

the N source excitations in Equation (11 t ke

L 1,7, arn

Figures 7 and 3 show cailculated eigansources and cigenpattern

magnitudes for N5, d-0,1),

C. Focussing the Field of an Array

As a second example consider the sate linear array discussed above,
but whose tield is observed at a point P in the near field region as
pictured in Figqure 4., Here, the appropriate : operator reduces to a

1xN matrix with eicments

Gi(nﬁ = oo n-1.7,...N (18)

where the v, oare defined in Digure 4, aad the operator oreduces to

an NxN matrix with elements,

(e o
‘]K('n s
H{in,m) = 5—7— - nyn-1,72,.0.N . (193
ror
n om
f

P Ly,

o
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Figure 2. [Eigensources of five element

with d=0.4x.
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Figure 4. N-element linear array antenna and an
observation point P located in the near
field region,
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The norm of s remains the same as Etquation (12) but because region Rf
in this case is the near field point P thc norm on f hecomes simply

(f.f), = F(PYES(P) . (20}

P

It is obvious that the eigensource with the largest eigenvalue
yields the largest field al point P while the norm of the source is
fixed. Figure 5 shows this case of an optimally focussed linear array
with N=5, d=0.5\ and P located at (2X,1.5X) = (xp,zp). We comment that
the optimum field at » is larger by 0.11 dB than is the field obtained
there from an array =t ce-nhased elements wilh unifarm amplitudes.

D. Eigensources and Eigenfields of a Slit Aperture

"

As an example of a continuously distributed radiating system,

s

cons ider two identical planar parallel «lits of width ?a and separation

]
]
_é
;
;
i

b, as shown in Figure 6. The Jeft siit is considered to ferm a source

and the right slit serves to observe the field due to the source. For

A Ll L 8,

such a two dimensional problem ¢ is the integral operator 'h’j

T S

ka
flhx,) = [ G{kx,,kxy) s{kxy) d{kx,) (71) E
2 . 1 1 | ;
-ka ¥
with karnel é
I
7 i
3 g .k(xl-XQ) %
J ~Jk——=5 - -
( e A 2b 5 -
G\kx?,kxl) - 5 Lo . (22) ;%
The Fresnel approximation ihas been assumed in Cgquation (2?). The f
Hermmitian iterated operator ji is an inteqral operator with kernel é

i
m
e il N 1 P BT
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Figure 6.

Two apertures with width 2a and separation b.
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ka

Hkx kxy) = [ Gc(kxz,kxi) Glloxy k) d(kx,)

-ka
X.z_xﬁz
- 1 Y ka 1 LA
Ca s | sin g ) ’3
= ;B e EE——T—TT =1 - ( )
HERtRY

Def ining a modified source function r(kx]) and a real symmetric kernel

h(kx'],kx']') by

(kX])z
. -J kb \
rkxy) = e s(kx,) (24)
. sin g(kxi-kx?) 1
hikx!,kx4) = = | ~—-=-—=——n-~- s (25)
1 ] nb a , W
B(kx]—kx])

the eigenvalue equation (6} becomes

. ka
| ] h{kxy, kxihr {kxddlkxy) = vorctkx) L 1= 0,1,2,. . (26)
’ -ka

Once this equation 1s solved for {ri}, the set of eigensources {Si}
and eigenfields {fi} are given, respectively, by
‘(kx])z

*J—‘?IB—
si(kx]) = Niri(kx1) e

(27)
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and
ka
filkx,) = Ny '[ka G{kxy kxy) s (kxy) d(kxq)

2

J.[(k"?_> n] K kx,

Y ) T ka  +ti—ip

e A kb ‘"
= N] -‘2‘,""_‘“‘" JTB- {ka r.l\ X'I) d(kx])

(28)

where N, are convenient normalizing constants. With a change of

variahles

ka = % (29)
kxj =t (31)
kx" = s , (32)

]
equation (26) may be rewritten in the form

T/2 .
si(t-s) virg(t), 1=0,12.0 o (33)

de Ty s ey

This equation has been studied extensively by Slepian and Pollak + 7¢
who show its solutions to be the angular prelate sphercidal functions,

ro{t) = Soi(c.t) and its eigenvalues to be

16
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where Ré})(c,l) are radial prolate spheroidal functions. The parameter

2
c = %I or, according to Equations (29) and {30), c = ama_ . 2%F where

Ab
F is the Fresnel number

2
F=i;B . (35)

Asymptotic expressions for Ai(c) for small and large values of ¢ (i.e.,
small and large values of the Fresnel number) with index i being fixed
have been derived by Slepian and Sonnenblack [8].

For the normalization condition expressed by Equation (8) to hold,

the ith eigensource 1is

/ 2
\kX])

j - -
5. (kx,) = vf]/z(c\ e kb g Ac,kxy) {36)
1 i oi 1

7

and the corresponding eigenfield given by Equation (28) is

p 2 1
S5 10l e
k~_- i 3 2¢ (]) /
. Ron (c,1)Soi\c,kx2)

-1/7 I T
Xp) = vi]/z(c) e 2kb
2
[
_j[\kxa)_- _n nn} ‘1 r _\
S T AT T g kg s (e 1)1 (37)
z L on J

Since the {Soi} form a complete orthogonal set on either slit, a source

and its field are corveniently expanded in terms of {s.} and £, re-
spectively.

© o}

The eigenvalue vi(c) corresponds to the ratio of the power
received to the power transmitted in the ith mode, Furthermore,

the i=0 mode has the largest eigenvalue, vo(c), from which we conclude

that power transfer bLetween apertures is maximized in this lowest order

mode. Using this fact and the fact {8} that for small ¢ (i.e., small
FY,

, (38)

%
%
b
i
%
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we can state that for two distantly separated slits the received power
cannot exceed 4F times the transmitted power. For large ¢ (i.e., large
F) it is known 78] that

vy(c) =1 - 4 /7T e 2C 21 = oan oop o70f (39)

which has a value only siightly less than 1 for F values larger than
F=1/2.

It is worthwhile to note that the lowest order (optimum) source
has a positive-going parabolic phase distiibution {Equation (27)) which
tends to compensate for the diverging effect of a finite slit; the field
achieved by this optimum source has a regative-going phase
distribution (Equation (28)).

[I1. EIGENVALUE EQUATION WITH HERMITIAN
WEIGHT OPERATOR

It has been shown in the previous sections that the eigenvalue
equation of the Hermitian iterated operator yields eigensources and
eigenfields which can form useful basic sets in which to expand arbitrary
source and field distributions. It was also shown that an optimum source
can be determined which produces maximum-field over the designated field
region under the condition that the norm of the source is fixed. In
this section we extend the theory to encompass more general conditions
by replacing Equation (6) by an eigenvalue equation of the Hermitian
iterated operator which includes a Hermitian weight operator, i.e.,

sy = vy HS, . {40)
Here we assume that tho weight operator j is Hermitian and positive
definite in which case 1% can be shown that the solutions of Equation

[40) satisfy the relations

N




~

(55515 3) (a1)

L]
o

R 1
S

S

Equations (4Q), (41), and (42) are extensions of Equations {6), (8),
and (9), respectively. Thus, we can interpret the eigensource with
the largest eigenvalue as being the optimum source in the sense that

(S,HS)R is largest, (s,is)y being fixed (rather than (s,s)p being
S s S

fixed as developed in Section II),

In work to follow on arrays it will be useful to articulate the
operators in Equation (40) in the form of matrices. If U is the orthog-

onal matrix which diagonalizes H and y is the diagonalized matrix, i.e.,
L'] j
UH U =y = Hn , (43)

o

then Equation (40) transforms to

(u']/2 U*HUU-]/Z)(U]/ZU*Si) = vj{u]/zu*si), (44)

or

H' st = v.s! {a5)
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It is easy to verify that Equaticns 145) and {46) are consistent with
Equations {42) and {41), respectively,

~

A second useful case arises when !, in addition to being Hermitian

and positive definite, is also factorizable as

. *
Ho= A A (17)
Equation (40) then transforms to
S1x -
AT AT s ) = v s ) (a)
or
1] "o~ y " ( \
itos st (49)
whose eigensolutions satisfy the orthoncrmality condition
{en |!\ = K.
‘Si’SJ’R ¥ (50)
S

It 15 easy to verify that Equations {49} and (50} lead back to Equations

(42) and (41), respectively. In additian it can be shown i 9 that when

i is factorizahle the minimum ¢igenvalue is (in matrix notation)

- ! '] ‘]
Vg A HTA%) (51)

and the corresponding eigensource is

Smin ° H_IA*. (52)

20




P —

- R e

A. Maximizing Endfire Radiation of an Array

While Fixing the Radiated Power in a

Specified Angular Sector

A linear array of N isotropic point sources equispaced a distance

d along the z-axis as sketched in Figure 1 radiates into the conical
sector about endfire shown in Figure 7. The power radiated i3 given

by
A~ N m R A
p = 2m T s ¢ [ ed(m-nlkdeos® (.9 4
by ¢y Tmtn
m=1 n=] e
0
N N N c
= v S H(m,n) S, (53)
m=1 n=1
where
- -Ji(m-n) %ﬂ (cosGO-l) sinkm—n) ;Q {(1+cosd ﬂ
H(m,n) = 2n e —_ -
kd
{m-n) >

H({m,n) are the clements of an NxN Hermitian matrix A, It is clear that

P appears in the form
P = (s,Hs) (5%)

which, if we constrain P to be unity, corresponds to Equation (41).
Similarly, the power density radiated in the endfire direction, @=u, is
S = {s,Hs) {56)

R
S
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Figure 7.

Ancular sector (shaded) in which radiated

power

is tn be confined.
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where H is an NxN matrix whose elements are

H(m,n) = e-j(m-n)kd . (57)

The optimum source, that is, the source which maximizgs the end-
fire power density S while constraining the radiated power P to a specified
sector is the eigensource with the largest eigenvalue satisfying Equation
(40) with Q and H specified by matrix elements given in Equations (54)
and (57), respectively. Field pattern< for an cxample with N=5, d=0.3),
eO=30°(3o°)1zo° are shown in Figures 8-10.

st

' IV.  EIGENVALUE EQUATION OF PERFECTLY CONDUCTING BODIES

Garbacz “rvect . yatid o aenerclized expancinon for the field 1

radiated or scattered by a loss-free obstacle of arbitrary shape S in

terms of characteristic functions defined in Ref, {1', He noted for the

perfectly conducting obstacle that each characteristic function is as-

s Ml ]l Ll gl |

sociated with a real characteristic current defined on S which gives
rise to equiphase fields throughout the volume occupied by the obstacle.
This observalion, though not proven in a general way, led him to obtain

a characteristic equation

ol el

g "l

or

E; = 20, = (1+3)) R 9, (55b)

where J, is the ith characteristic current associated with the ith 3
characteristic value A, and R and X are the Real and [maginary Hermitian ]

parts

[}
;
‘ K= 5(140) (59) ;
DR (60)
]
k

i
]
1
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Figure 8. Optimum field radiation patterns of an array whose radiated
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endf ire radiation ithensity is fixed,
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of the impedance operator I = R+jX of the obstacle ! 10]. The function
Ei is the ith characteristic field component tangential to the surface
S. The characteristic currents (Ji) simultaneously yield orthorormal

characteristic radiation patterns while they themselves have the ortho-

normality properties

(RJj,Ji)RS Gij (61)

1
>
O

(XJJ,Ji)R i%i3 (62)
S

where the inner product is still defined by Equation (?).

We next proceed to discuss the set of eigenfunctions of the
Hermitian iterated operator as a set suitable for expanding fields
radiated or scattered by a perfectly conducting obstacle. To begin,
we note that the impedance operator - relating currert on S to tangential
field on S is an example of the operator G described in Section !l and
so we can def ine eigensources and eigenfields in the manner already
described. In this case, the eigensources are currents Ki on the obstacle
surface and the cssociated eigenfields are components of the electric

fields tangential to the same surface (making I unbounded}. The eigen-
g g g

currents are solutions of Equation (6)
Ky o= ov K, (63)
satisfying the orthonormality conditions, (Egiations (8) and (9))

(K].,KJ.)R = 6.; (64)

(K%K = v . (65)

L ‘m\“ I

L

L
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Note that the characteristic values xi are always real and can take
values - « < A; < =, while the eigenvalues v, are always real and can take
values 0 < vi. The characteristic values X, = I @ correspond to charac-
teristic currents which resonate the interior volume of the obstacle

while eigenvalues v = 0 correspond to this condition.

When the ambient medium is reciprocal, i.e., 7*=ZC, Equation (63)
can be reduced to a simpier and instructive form., Operating on Equation
(63) with 7,

22K = vz Ky (66)

et ooy

Ky VK (67)

g oy

we see that ~ K. and K? satisfy identical eigenvalue equations. This
being so, they must be related by a multiplicative constant c,, i.e., {3

ERRICTILY (68)

S
where Ei is the ith eigenfield component tangential to the obstacle

surface. The magnitudes of c, are fixed by Equations (64) and (65) l
to be
2 .
le 19 = v, (69)
while the phases of c; are not unique, being ralated to the arbitrary E

phases of Ki by Equation {68)., Thus, we can choose the phases of ¢,

i '




. . - . . . .
for convenience. One possible choice is ;= Jv1/2, purely imaginary

quantities, in which case Equation (68) can be rewritten

X R K 1/2 K
{/ T\ Vi ( ] (70)
R -X \\K']!/ \\K']!

wiere K' and K" are the real and 1mag1nary parts of K , respectively.

7 J
Another possible choice is ¢, = v:/ where y, are chosen so that

the phase of f is the negative c¢f the phase of K, that is,
current K, nd assenisied eigenfield f are scaled conjugate functions
over S, Th1s latter choice for c; is general and provides an interesting

contrast between eigenmades of the Hermitian iterated operator and
and

the eigen-

characteristic modes; namely, the real characteristic current Ji
its associated tangential field Ei maintain a constant phase difference
over the surface S while their amplitude distributions differ in general
over S; on the other hand the generally complex eigencurrent K and

its associated tangential field f maintain the same {(scaled) ampl1tude
distributions over S, while their phases very over S in Such a way as

to make them conjugate functions.

For those special conducting shapes S, such as the sphere, the
circular cylinder, the elliptic cylinder, etc, which correspond tn

constant coordinate surfaces of the separable coordinate systems, the

characteristic currents Ji and eigencurrents Ki become identical {except

for different real normalization constants) and their associated fields
Ei and f. become identical (except for different real normalization
the modal currents and fields on S track in both

constants). Thus,
amplitude and phase. In such special cases, the ratio of the ith modal

field and its current becomes a complex (in general) number which remains
fixed over the entire surface and may be interpreted as the ith modal

impedance ;= Ri + JX;. Then tquations {58), (68) and (69), together

_ . Ve RRAL
with the choice Cy =V, e lead to
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a8
- J tan (z)
2.2 i
Cj = VR{HX e (71)
or
vi = (R&x?) (723)
and
X
A] =5 (72b)

which indicate the connection between the eigenvalues v of the
Hermitian iterated operator and the characteristic values xi,

N tan'lxi
€. = RVI + T ¢ (73a)
i i i
or
v. = R% (1 + 1?) . (73H)

As examples, Equation (70) has been appiied to a thin straight
wire and infinite cylinder of rectangular cross section, using the method
of momants ; 10! to arrive at matrix representations for g and X, Values
of vy are shown in Figures 11-13 as functions of electrical size of
tne obstacle. As expected in the case of the cylinder, where we pass
through resonances of tihe interior region we notice that certain V5
become zero for kb covresponding to cut-off frequencies of associated

wavequide modes. Thase frequencies agree with theoretical values within

0.5% for the TM modes and within 0.24% for the TE mc 4.5, one guarter
of the cylindrical periphery having been divided intn 13 parts for

application of the method of moments.
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Figure 12. Eigenvalues of TM modes for a rectangular cylinder with
side-lengths b and 4b/9. The number of subdivisions in the
computation by the moment method is 13 for one quarter
of the periphery.
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side-lengths b and 4b/9. The number of subdivisions in the
computation by the moment method is 13 for one quarter
of the periphery.
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V. CONCLUSTONS

By extending Parseval's relation to any combination of a source
and a field, we have arrived at an eigenvalue equation of a Hermitian
operator formed by iterating any general operator relating a source
and a field. The eigensources and corresponding eigenfields whicy are
solutions to this eigenvalue equation are complete and orthogonal over
the source and field reqions, respectively. Any eigenvalue of the
equaton is the ratio of the norm of the corresponding eigenfiela and
the norm of the corresponding eigensource. Except when the operator
is improperlv singular, the completeness and orthogonality properties
of the eigensolutions make them attractive for expanding arbitrary fields
and sources associated with discrete or continuous radiating or scat-
tering systems.

A few examples show the application of the theory to arrays and to
two planar apertures. Qut of the latter work comes the interesting
observation that the theory applied to the operator equation known as the

Fourier transform leads to eigenfunctions which are the prolate spheroidal
functions.

When the theory is applied to tne complex impedance matrix of
a conducting scattering obstacle, it is shown that the eigencurrents
and eigenfields introduced here are conjugates of each other, which
contrast with characteristic currents and fields of Garbacz, Harrington
and Mautz. Only in the case of obstacles corresponding to coordinates
of separable coordinate systems do the two modal types coincide.

The eigenfunction tneory is applied to the thin linear wire and
the rectangular cylinder and the corresponding sets of eigenmodes are
presented here., Results encourage the application of the theory to
other shapes and invite an investigation of the eigencurrent distributions

as well as the eigenvalues.
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